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ABSTRACT: Nuclear magnetic resonance (NMR) profiling is used for characterization of monocultivar binary wine mixtures.
Classification and quantification of the relative amount of wine in themixture are made in two steps. First, each sample is classified as
a mixture of a determined type by solving the appropriate classification problem using NMR profiles. The relative amount of the two
correspondingmonovarietal wines is then evaluated bymultilinear regression of a selected set of NMR variables. Linear discriminant
analysis (LDA), used in the classification step, gives a very good separation among the different mixture classes. On the other hand, a
single layer artificial neural network, used to solve the multilinear problem, gives the relative amount of wine type in themixture with
a precision of about 10%.
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’ INTRODUCTION

The identification of the origin of food materials is of great
importance for both producers and consumers. Among the
several approaches for the determination of food origin, molec-
ular profiling is the most diffused. In particular, nuclear magnetic
resonance (NMR) profiling has been successfully applied to the
identification of botanical, zoological, and geographical origin of
different foods.1�14 NMR is a very suitable technique for the
characterization of complex systems such as foodstuffs, because it
allows one to determine simultaneously a high number of com-
pounds. Actually, NMR profiles provide a quite exhaustive
representation of the chemical composition of the sample with-
out the need of extensive manipulations. However, the correla-
tion between metabolic composition and food origin cannot be
easily established, due to the natural variability in the chemical
composition of the ingredients and to the various manipulation
processes used in food preparation. This issue is usually ad-
dressed by using multivariate statistical techniques, which permit
to extract information related to the food origin from the
chemical noise.4,15 Moreover, in some cases, foods of different
origin are mixed together, making the identification process
much more demanding.

Mixing of different grape cultivars is a crucial process in wine
production. In fact, the flavor and the identity of great quality
wines are determined by the variety pattern of grapes used.
Variety blends are usually made at must level, but also, mixtures
of monovarietal wines can be found.

The analysis of wine composition, in terms of grapes variety
pattern, has different aspects. First, a wine sample has to be
identified as a monovarietal wine or as a mixture. Second, the
blend type has to be recognized according to the cultivars com-
posing the mixture. Finally, the relative amount of monovarietal
components has to be evaluated with an appropriate regression
process.

The analysis of wine composition is, in general, a very difficult
task if the type and the number of the varieties used in the

blending process are unknown. However, in the case of binary
mixtures, the problem can be successfully addressed by molecu-
lar profiling and suitable pattern recognition and regression
approaches.

In this work, NMR was used to detect molecular profiles of
binary mixtures of monovarietal Italian wines. In particular,
blends having Montepulciano (Mont) monovarietal wines as
base were created by successive additions of Merlot (Merl),
Cabernet (Cab), and Sangiovese (Sang) wines. The obtained
NMR profiles were used in a pattern recognition algorithm for
the identification of the blend type and successively as inputs in a
regression algorithm for the evaluation of the relative amount of
each variety component. In particular, linear discriminant anal-
ysis (LDA) and an artificial neural single layer network (ANN)
with linear activation function were used to identify the mixture
type and the percentage of added wine in the Montepulciano
base. The ANN allows the correct quantification of each wine
component in the mixture with about 10% reliability.

’MATERIALS AND METHODS

Sample Preparation. Eight red wines (five Montepulciano
d'Abruzzo, one Sangiovese, one Cabernet, and one Merlot), made in
2007, were provided by Crivea (Miglianico Ch) research center. All
Montepulciano d'Abruzzo wines were added with Sangiovese, Cabernet,
and Merlot in the following percentages: 10, 15, 20, 25, 35, 50, and 70%.
In a second experiment, three Montepulciano d'Abruzzo and three
Sangiovese wines, produced by the same Crivea research center in 2009,
were mixed in the following amonts: 20, 40, 60, and 80%. All sam-
ples were stored at�21 �C until the moment of the analysis. Defrosted
wines (0.9 mL) were placed into a NMR tube and added with 0.1 mL of
D2O (deuterium oxide) and 10 µL of a 0.06 M DSS (2,2-dimethyl-2-
silapentane-5-sulfonic acid) solution. The sample pH was adjusted to
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4.00 ( 0.05 by addition of suitable small amounts of a 1 M D2O
phosphate buffer at pD = 6.5.
NMR. Proton NMR spectra were recorded on a Bruker 600 Avance

spectrometer operating at 600.13 MHz at 298 K. The spectra were
collected with a 90� pulse of 9.45 s, relaxation delay of 1.5 s, and 256
scans. The strong water signal were suppressed by presaturation during
the relaxation delay. The time domain data (FID) were Fourier
transformed without apodization and were carefully phase and baseline
corrected (Topspin1.3, Bruker). Each spectrumwas divided in segments
containing NMR signals only, by applying, on the average spectrum, a
running windowing median algorithm for baseline/peak discrimina-
tion.16 In each segment, the NMR signal was reduced in buckets17 of
equal width (0.0122 ppm) except at the segment terminal ends, where a
reduced width was allowed to avoid unnecessary inclusion of baseline
points. For the same reason, when the length of a segment was shorter
than 0.0122 ppm, the bucket width was adapted to the segment length.
To avoid statistical distortions, the suppressed water signal region was
always excluded from the bucket spectrum. In addition, the citric acid
region, which presents a strong concentration dependence of line
positions, and ethanol resonances were also excluded from the bucket
spectrum.

Statistical Methods. The problem of determining the mixture
composition in terms of monocultivar wine components has to be
addressed in two steps. The first step is the recognition of the sample as a
mixture and the identification of its varietal components. This is a typical
classification problem. The second step is the determination of the
relative amount of each varietal component in the mixture, which is a
typical regression problem. Both regression and classification problems
can be seen as a particular case of function approximation.18 In the
classification problem, the probability of membership is approximated
by a suitable discriminant function, which provides a discrete variable
associated to the sample belonging class. In the regression problem, the
relationship between the input and the output variables is approximated
by a regression function according to the experimental data. In this case,
the outputs are continuous variables. The simplest choice of the
discriminant function is a linear combination of the input variables in
which the parameters of the model are represented by the coefficients of
the linear combination. LDA belongs to this class of linear classification
models, and in the present work, it was used in the classification step of
the wine mixtures.

In regression problems, the model function depends on the relation-
ship between dependent and independent variables. In case this relationship

Figure 1. 1HNMR spectra of pure wines used in the blends. The radiation damping artifacts are labeled by r.d. The intensity of NMR signal is expressed
in arbitrary units (A.U.).
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is not explicitly identified, an artificial neural network may be used to
approximate the regression function. However, in the case of wine mixtures,
the relationship between the metabolite concentrations and the relative
amount of each wine component in themixture is expected to be linear. This
multilinear regressionproblem is anyway equivalent to an artificial single layer
neural network with a linear activation function, which is represented by:

yk ¼ g ∑
j
wjkxj

 !
ð1Þ

where x is the input vector, y is the output vector, and g is the activation
function. In the NMR spectrum, the variable xj is represented by a single
bucket, while y represents the relative percentage of monocultivar wines in
the mixture.

Through the bucketing procedure, the whole spectrum was reduced
to 409 variables, which were still toomany as compared to the number of
samples to avoid overfitting phenomena. To further reduce the number
of variables, retaining only those significant for individuating the origin
of the wine samples, the analysis of variance (ANOVA) was used in
combination with LDA to maximize the ability of LDA in predicting
unknown samples.19�22

For this purpose, each set of wine samples was divided into a training
and a validation set by including in the last set one-third of randomly
selected samples. By using the whole set of samples, a progressive
number of variables were selected according to their F of Fisher, the
variables with the highest F were retained. The selected variables
were used to build a linear discriminant model for the training set. The
obtained model was then used to make prediction on the corresponding
validation set, and the number of correctly predicted samples was
determined as a function of the number of variables included in the
model. The best model order, that is, the optimal number of variables to
be used in the pattern recognition algorithm, was then chosen as the
number of variables that give the maximum of correctly predicted samples
in the validation set relative to the specific classification problem. This
procedure of model selection gives the best compromise between the
complexity of the model and its final predictive ability.22

’RESULTS AND DISCUSSION

Figure 1 shows the proton NMR spectra of the four mono-
varietal wines used as components for the wine mixtures. The
most intense signals are associated with ethanol resonances, while

the water signal is quite low due to presaturation signal suppression.
Small artifacts appear in the spectra at a periodic distance from
ethanol resonances equal to the frequency difference between the
triplet and the quadruplet of ethanol. These harmonic peaks are
probably due to radiation damping23 and actually progressively
disappears after sample dilution. In any case, when present, these
signals were removed during the bucketing procedure. The ethanol
content of a wine is strongly related to several factors such us grape
ripening, sugar content, seasonality, etc. and then is not suitable for
discriminating between wines made by different grape varieties. For
this reason, its resonances were removed from the set of signals used
for cultivar discrimination. Multiple solvent signal suppression also
may be a solution to remove ethanol signals and to attenuate
radiation damping effects.

Let us consider as a single set all of the samples belonging to a
particular binary mixture independently of the relative amount of
single cultivar components. In such a way, three sets are created,
respectively, for Cab-Mont, Sang-Mont, and Merl-Mont binary
mixtures. To each class actually belongs all of the mixtures with a
relative concentration ranging from 10 to 100% of the secondary
component (Cab, Merl, and Sang).

Figure 2 shows the LDA on these three sets in which a validation
subset was created by randomly choosing one-third of the total
number of samples. In the figure, the training set samples are plotted
with colored symbols, while the validated samples are shown in
black. The samples in the validation set, whichwere attributed to the
wrong class, are surrounded by a bigger symbol representing their
real belonging class. An approximation of the separation boundaries
is reported in the figure for each class.24 The arrows indicate the
direction of increasing amount of the secondary wine in the
Montepulciano-based mixtures. Actually, the samples close to the
figure center are those with higher similarity due to the high
percentage of base wine. The analysis was performed on the 27
NMR buckets having the highest value of F of Fisher relative to the
three mixture classes. The number of variables included was
determined according to the maximum prediction ability of the
LDA model on the validation set. The prediction ability was
estimated in the 95% of successfully predicted samples during
validation procedure. K-fold cross-validation, with k = 10, confirms
a success percentage of 95 ( 7%.

Once the nature of the mixture was established, the relative
amount of wines present can be evaluated by solving the
appropriate regression problem. The results of an artificial single
layer neural network with linear activation function are reported
in Figures 3, 4, and 5, respectively, for Cab-Mont, Merl-Mont,
and Sang-Mont blends.25 In the x-axis, the real amount of the
second component of the mixture is reported, while the y-axis
represents the ANN average-predicted values. Error bars show
the standard deviation of the leave-one-out validation test. As
shown by the linear regression of the ANN data (solid line), the
correspondence between the actual mixture content and the ANN
predicted value is very high (correlation coefficient R > 0.99).

Figure 6 shows the prediction of the amount of added wine in a
Montepulciano base when all of the samples (Cabernet, Merlot,
and Sangiovese) were considered. Actually, ANN was trained by
considering each wine addition, in the base wine, independently
of the cultivar. This picture shows that the percentage of base
wine can be determined independently of the nature of contaminat-
ing wines, suggesting the possibility that also more complex wine
mixtures could be quantified by NMR profiling.

For each particular mixture, the ANN was trained using as
inputs 10 buckets with the highest value of F of Fisher

Figure 2. LDA of different mixtures: Cab-Mont (red circles), Merl-
Mont (blue down triangles), and Sang-Mont (green up triangles). An
approximation of the separation boundaries for each class is reported as a
solid line of color corresponding to that of class symbols.
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determined by ANOVA of the spectra relative to the correspond-
ing mixture only. The chemical shifts of the selected variables are
reported on the correspondent spectrum in Figure 7. Circles
represent the selected variables used in the classification pro-
blem, while triangles correspond to the variables used in the
regression step. Each mixture has a proper set of discriminating
variables with very different discriminant power. The lowest F
values are found in the Merl�Mont mixtures, indicating a great
similarity between Merlot and Montepulciano wines. On the
other hand, the highest F value (600) is displayed by the signal at
2.21 ppm in Sang�Mont mixtures, which is tentatively assigned
to the methyl group of acetamide. However, even if this signal is
removed from the bucket spectrum, a good prediction perfor-
mance is achieved by ANN (see the Supporting Information).

The results until now displayed refer to mixtures in which
only one sample of contaminating wine is added to the five wines
used as base. In a second experiment, the effects of the natural

variability of the second wine component were analyzed. In
Figure 8, the ANN quantification of a mixture of three Mon-
tepuciano and three Sangiovese wines is reported. The ability to
predict the unknown amount of Sangiovese wine in themixture is
still good even if larger error bars are present. The increment of
the error bars in Figure 8, as compared to that of other ANN
results, is actually due to the increase of mixture variability related
to the inclusion of three contaminating wines but also to the
natural variability of the samples related to the cultivation year. In
fact, despite in Figure 6 contaminating wines of different cultivars
were considered, the validation procedure gives error bars smaller
than that of Figure 8. Actually, because the wine used in the
second experiment was produced 2 years after the wines of the
first experiment, some care has to be used in comparing the two
data sets. In fact, the chemical compositions of grapes and wines
strongly depend on the cultivation season.

Figure 4. ANN prediction of the relative amount of Merlot in Monte-
pulciano wines vs the actual composition of the blend. The solid line
represents the linear regression of the data by y =Rþ βx withR =�0.1(
0.6, and β = 1.02( 0.02. The regression correlation coefficient isR= 0.999.

Figure 5. ANN prediction of the relative amount of Sangiovese in
Montepulciano wines vs the actual composition of the blend. The solid
line represents the linear regression of the data by y = Rþ βx with R =
�1.2 ( 0.2, and β = 1.045 ( 0.007. The regression correlation
coefficient is R = 0.999.

Figure 6. ANN prediction of the relative amount of Cabernet, Merlot,
and Sangiovese inMontepulciano wines vs the actual composition of the
blend. The solid line represents the linear regression of the data by y = R
þ βxwithR = 1.5( 0.6, and β = 0.97( 0.01. The regression correlation
coefficient is R = 0.999.

Figure 3. ANN prediction of the relative amount of Cabernet in Mon-
tepulciano wines vs the actual composition of the blend. The solid line
represents the linear regression of the data by y =Rþ βxwithR = 1.5( 1,
and β = 0.96 ( 0.03. The regression correlation coefficient is R = 0.997.
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In any case, whatever is the natural variability for the year of
interest, the method proposed is able to evaluate the unknown
amount of added wine in a binary mixture, estimating also the
reliability of the prediction by suitable error bar calculations. In
addition, the reliability of the ANNpredictionmight be increased by
training the network by a suitably high number of know samples.
Because the performance of themethod depends on the year of wine
production, new predictive ANNmodels have to be constructed for
each production season. Also, the spectral components, which are
responsible for the discrimination success, are different in each
production season due to variability of the production conditions.

’ASSOCIATED CONTENT

bS Supporting Information. Data analysis and figures of
ANN prediction and F of Fisher of selected variables. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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